
Eur. Phys. J. D 41, 629–639 (2007)
DOI: 10.1140/epjd/e2006-00255-3 THE EUROPEAN

PHYSICAL JOURNAL D

Modeling of clusters by a molecular dynamics model
using a fast tree method

G.M. Petrova and J. Davisb

Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Ave SW, Washington, DC 20375, USA

Received 19 May 2006 / Received in final form 29 September 2006
Published online 22 November 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. The dynamics of clusters irradiated by a high-intensity ultrashort pulse laser has been stud-
ied using a fully relativistic three-dimensional Molecular Dynamics Model. A fast three-dimensional tree
algorithm for computing the electrostatic force has been developed and compared with the conventional
particle-particle method. The particle-particle method requires computation time, which scales as O(N2

p ),
and it is faster for small number of particles Np < 103. In the opposite case of relatively large ensem-
ble of particles Np > 103, the preferred method is the tree algorithm whose computation time scales as
O(Np log Np). The tree algorithm has been benchmarked against the particle-particle method for clusters
composed of xenon and deuterium atoms and its accuracy and computation time have been analyzed. The
optimum free parameter of the tree method has been determined to be θ ≈ 0.5. We addressed the effects
of boundary conditions by studying the contribution of adjacent clusters to the total electromagnetic force
exerted on individual particles. We found that the adjacent clusters play a minor role in the overall cluster
dynamics.

PACS. 52.38.-r Laser-plasma interactions – 52.38.Ph X-ray, gamma-ray, and particle generation – 52.50.Jm
Plasma production and heating by laser beams

1 Introduction

Theoretical studies of laser-cluster interaction have ad-
vanced considerably in the past ten years. Initially,
the model of choice was based on hydrodynamic ap-
proach [1–3], but alternative models such as Monte Carlo
classical particle-dynamics simulations [4,5], particle-in-
cell (PlC) [6–13] and Molecular Dynamics (MD) [14–31]
were employed as well. Both PIC and MD have been
proven to be reliable and robust simulation tools and have
been widely used for simulations of plasmas. In a MD sim-
ulation, the classical equations of motion for the positions,
velocities, and accelerations of all particles are integrated
in time using a finite-difference algorithm and the dynam-
ical trajectories given by the Newton’s equations of mo-
tion are calculated. In essence, both PIC and MD are used
to advance particles by solving the particle equations of
motion, which, for charged particles, requires the compu-
tation of the electromagnetic force acting on each particle.
On the computational side, the main difference between
them lies in the particular numerical implementation. In
the MD approach the force on a particle is computed as
a sum over individual two-body interactions. For a col-
lection of Np particles the direct evaluation of all pair

a e-mail: george.petrov@nrl.navy.mil
b e-mail: jack.davis@nrl.navy.mil

inter-particle forces requires O(N2
p ) operations. In the PIC

method, the field is computed on a grid of cells, and the
force on the particles is interpolated from the fields on the
grid. The computation time scales linearly with the num-
ber of grid points, and, in general, leads to O(Np) opera-
tions. In reality, MD calculations are reasonable for only
the smallest systems with N ≤ 103, and for larger systems
the problem poses severe numerical difficulties. The com-
putational cost grows so quickly, that models with more
than 105 particles become impractical. The considerably
more CPU time devoted to calculate the inter-particle
forces is the main limitation of the MD models.

The other difference between PIC and MD is the use
of computational grid. PIC employs a grid to extrapolate
charges from particles to grid nodes and forces from grid
nodes to particles, while the MD does not require a grid at
all. The grid imposes limitations such as artificial bound-
aries on the system of particles, even if such boundaries do
not exist. Grids require spatial resolution: for example, it
is customary for plasma simulations to resolve the Debye
length. Sampling of fields and forces is another concern.
Some portions of the calculation may be undersampled,
while others are oversampled. As a result, various features
involving sharp gradients such as shocks and fronts may
be poorly resolved. The number of particles used in sim-
ulations is also grid-dependent: one must allow at least a
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few particles per cell in order to ensure adequate statis-
tics. Therefore, in one or two dimensions many cells and
particles per cell can be readily used and adequate grid
resolution achieved, but in three dimensions the neces-
sary number of grid points and number of particles may
become quite large. The grid adds to the overall com-
plexity of the problem, as the force computation requires
the solution of the Poisson equation. Grids are used as a
computational convenience, but they themselves introduce
other difficulties obscuring the aim of the calculation. In
contrast, gridless methods offer a large dynamic range in
ion charge and spatial resolution and do not impose geo-
metrical restrictions on the system to be studied. Gridless
methods are better suited when studying inhomogeneous
systems with high-density contrast or large asymmetries.
Therefore, an extension of MD models to large number of
particles is needed to compete with PIC models.

Both MD models and PIC have been employed to
model high-intensity laser cluster interactions. Unlike
other problems related to laser-plasma or laser-solid in-
teraction, the MD approach has a clear advantage for the
problem at hand. The limited number of particles in a
cluster (103–105), combined with the numerous advan-
tages of gridless calculations makes MD the perfect simu-
lation tool for laser cluster interactions. Modeling of rare
gas clusters with ∼104 atoms was recently done [29], but
larger clusters containing ∼106 atoms need to be mod-
eled. As an example, we can point out the explosion of
deuterium clusters relevant to table-top nuclear fusion.
High fusion rate and neutron yield can be achieved only
from large clusters, containing, perhaps, a million atoms.
Following so many particles may be on the verge of or
beyond the capability of present-day desktop computers.
Not surprisingly, a remedy for the N2

p problem in MD has
been sought. In 1986 Barnes and Hut [32] introduced a hi-
erarchical tree algorithm, whose computation time scales
with the number of particles as O(Np log Np). The force
calculation is improved by lumping particles at “large”
distance to a given individual macroparticle. The larger
the distance, the larger the clumps of lumped particles.
Thus, on average, the tree code achieves O(log Np) oper-
ations per particle. But the gain in speed entails reduced
accuracy of the force calculation due to lumping of par-
ticles. In principal, for large number of particles (>103)
the tree algorithm offers a significant reduction in com-
puting cost compared to the conventional particle-particle
method at the expense of a small, but controllable error
in the force computation. The N2

p nature of the problem
in MD models resembles that of the Fourier transform.
Before the Fast Fourier Transform (FFT) was invented,
there was little interest in the Discrete Fourier Transform
since it is inherently a N2

p problem. The FFT, which re-
quires O(Np log Np) operations, changed dramatically the
fate of the Discrete Fourier Transform since FFT can pro-
cess large amount of (multidimensional) data on a digital
computer. Analogously, the tree algorithm can boost the
capabilities of MD models.

There are different variations of the original tree algo-
rithm, in fact, fast tree algorithms have been created prior

to that of Barnes and Hut [33]. We adopted the original
Barnes and Hut algorithm because of its simplicity, flex-
ibility, and clear and unambiguous construction. The ob-
jective of the present article is to present the hierarchical
tree algorithm and its application to laser-cluster interac-
tions. It should be mentioned that MD models using the
tree algorithm have already been successfully applied to
similar problems, such as laser-cluster [18,25,26,31] and
laser-solid [34] interactions. In Section 2 we describe in
detail the physical and computational issues involved in
modeling clusters. Section 3 is devoted to the classical
Barnes and Hut tree algorithm. Section 4 is left for re-
sults and discussions. The results refer to medium-size
clusters (50–100 Å initial radius) composed of xenon and
deuterium. Also in this section, the tree algorithm is com-
pared to the particle-particle method and the accuracy
and computation time of the tree algorithm have been
analyzed.

2 Formulation of the problem

2.1 Initial cluster configuration

We consider a single rare gas cluster irradiated by a high
intensity sub-picosecond laser pulse. The cluster has a
spherical form with initial radius R0. The cluster param-
eters are derived adopting the liquid drop model. The
number of atoms per cluster is N = (R0/Rw)3, where
Rw = 3

√
3M/(4πρ) is the Wigner-Seitz radius and M

and ρ are the mass and liquid density of the gas. In
our idealized model clusters are located at equal inter-
vals Ric ≈ 20R0 [29]. The cluster is located at the origin
of the coordinate system and the 3D computational box
has equal sides extending from −Ric/2 to Ric/2. The sim-
ulations commence by initializing particles position and
velocity. A sphere with radius R0 is filled with tightly
packed neutral particles, arranged in a random fashion.
Outside the sphere is empty space extending up to the
cluster boundaries ±Ric/2. The particles occupy a very
small faction of the computational box, typically ∼1%.

For computational purposes we deal with macroparti-
cles instead of individual particles. A macroparticle repre-
sents n identical particles (atoms, electrons or ions) with
charge qn, mass mn and size r0n

1/3, where q, m and r0

are the individual particle charge, mass and size. Different
species may be lumped differently, i.e. may have differ-
ent n, but all macroparticles of the same type have equal
mass and charge. The parameter n is carefully chosen to
satisfy two conditions. On one hand, it should be large
enough so that the number of macroparticles in the sys-
tem Np is not too big. On the other hand, n must be
limited to ∼102 in order to prevent macroparticles from
attaining excessively large charge resulting in too strong
binary Coulomb interactions [29], which are unphysical
by nature. An appropriate number is adopted from the
trade-off between the two. We consider only two types of
macroparticles: electrons and ions.
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2.2 Relativistic equations of motion

The charged macroparticles move according to their rela-
tivistic equations of motion

d�pi

dt
= �F laser

i + �FCoulomb
i (1a)

�vi =
�pi/mi√

1 + |�pi|2/(mic)2
(1b)

d�ri

dt
= �vi. (1c)

�F laser
i is the external force applied on particle i due to

the electromagnetic field of the laser, FCoulomb
i is the to-

tal Coulomb force applied on particle i arising from all
charged particles, �pi, �ri, �vi, mi and qi are the relativistic
momentum, coordinate, velocity, mass and charge of the
ith macroparticle respectively, and c is the speed of light.
Equation (1) refers only to charged particles: for simplicity
we assume that neutral atoms are immobile.

The force has been artificially split in two parts: ex-
ternal and Coulomb. The first one is known in advance,
while the second is a function of the particles position and
changes dynamically during the calculations. The external
electromagnetic force

�F laser
i = qi

(
�E(t) + �vi × �B(t)

)
(2)

in equation (1a) originates from the laser. The laser
pulse is defined by its wavelength λ and intensity I(t) =
I0 exp

(−(t − t0)2/τ2
)
, where I0 is the peak laser inten-

sity, and t0 and τ are given parameters. The laser electric
and magnetic fields �E = (E0(t) cos(ωt − ky), 0, 0) and
�B = (0, 0, −B0(t) cos(ωt − ky)) have amplitudes E0(t) =√

2I(t)/ε0c and B0(t) = E0(t)/c, respectively. The pa-
rameter ε0 is the permittivity of free space, k = 2π/λ is
the wave vector, and λ and ω are the laser wavelength and
frequency, respectively.

The Coulomb force is the most computationally inten-
sive part of the MD model. The Coulomb force exerted on
macroparticle i from all other macroparticles j is [34]

�FCoulomb
i (�r) = qi

∑

j �=i

qj

4πε0R3
ij

�rij , (3)

where �rij = �ri − �rj . Equation (3) does not use a pure
Coulomb force since we are dealing with point charges
and close encounters pose numerical problems. As is cus-
tomary in MD simulations, the Coulomb law is modified
by including the softening parameter rs, which is assumed
to be equal to the size of macroparticle i. With this mod-
ification the effective distance between particles i and j
takes form Rij =

√|�rij |2 + r2
s . The simple expression (3)

for the binary interaction between macroparticles has been
chosen in order to make the computation of the Coulomb
force for the particle-particle and tree methods compati-
ble.

2.3 Boundary conditions

The boundary conditions may be open [28] or peri-
odic [29,30]. For open boundary conditions no limitations
on the particle positions are imposed and the particles can
go anywhere in the free space. Periodic boundary condi-
tions simulate an infinite medium. They require formal
cluster boundaries (computational box), which are defined
through the intercluster distance:

−Ric/2 ≤ x ≤ Ric/2, (4a)
−Ric/2 ≤ y ≤ Ric/2, (4b)
−Ric/2 ≤ z ≤ Ric/2. (4c)

The aim of the periodic boundary conditions is to mimic
the influence of other clusters adjacent to the cluster under
consideration. This is achieved by (i) imposing that any
macroparticle leaving the computational box reappears on
the opposite side with the same velocity, and (ii) the elec-
tromagnetic field produced by the charged particles from
adjacent clusters is added to the Coulomb and laser fields
(details will be given in Sect. 3.2).

2.4 Cluster dynamics

The cluster dynamics involves a variety of elementary pro-
cesses for free electrons, neutral atoms and charged ions.
The elementary processes taken into account in our model
can be defined compactly as follows:

optical field ionization: Xk+ OFI→ X(k+1)+ + e (inner)
(5a)

collisional ionization: Xk+ + e (inner) → X(k+1)+

+ 2e (inner) (5b)
outer ionization: e (inner) → e (outer) (5c)
electron recapture: e (outer) → e (inner). (5d)

Ionization is accounted for via optical field (5a) and colli-
sional ionization (5b). The newly created electrons by both
processes (5a) and (5b) are placed inside the cluster as in-
ner electrons with randomly generated coordinates and
zero initial velocity. The ion charge of all ions is increased
equally by an appropriate amount. Processes (5c) and (d)
are unique to clusters. Clusters have boundaries and some
of the free electrons remain inside the cluster, while oth-
ers leave their parent cluster, making it positively charged.
“Inner electrons” are those within the cluster. Mathemat-
ically this condition is written as |�rk(t)| ≤ R(t), where
|�rk| is the distance of the kth electron to the origin of the
coordinate system and

R(t) =

√√√
√2

N∑

i=1

(x2
i (t) + y2

i (t) + z2
i (t))/N (6)

is the cluster radius. The sum is only over atoms or ions.
The factor two is introduced to roughly match the cluster
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Fig. 1. (Color online)
Schematics of the tree
formation (a) and force
computation (b). The dis-
tance to cell j partici-
pating in (8) is d =
|rij |. The typical values
of the free parameter are
0.1 ≤ θ ≤ 1.

radius at time t = 0. Electrons for which |�rk(t)| > R(t) are
called “outer electrons”. Outer ionization is the process in
which an inner electron leaves the parent cluster and be-
comes an outer electron. The reverse process of electron
recapture is also possible. It can occur when an outer elec-
tron is attracted to the positively charged cluster through
Coulomb forces or due to cluster expansion. It should be
noted that while processes (5a, 5b) create new electrons
and increase the average ion charge, processes (5c, 5d)
only reassign macroparticles as inner or outer electrons.

3 The hierarchical tree method

3.1 The Barnes and Hut algorithm

In 1986 Barnes and Hut [32] introduced a hierarchical
tree algorithm for computing long-range (electromagnetic
or gravitational) particle-particle forces. The tree method
is of the type “divide-and-conquer” and it is based on
a partition of the space enclosing the particles [34–39].
The whole space (root) is divided by cells of equal vol-
ume, called branches. In three-dimensions the number of
branches is eight, while in two dimensions it is four. Then
each cell is subdivided in the same manner until cells,
called leaves, contain either one or zero particles. This pro-
cess is illustrated in Figure 1a in two dimensions. With the
division of space accomplished, the computation of forces
on each particle is carried out. It starts with the root,
working through the branches toward the leaves. If the
cell dimension s and the distance d from the particle to
the “center-of-mass” of the cell are such that

s/d ≤ θ, (7)

the cell’s lumped contribution is added to the force on
the particle. Otherwise, the daughter cells of the branch
containing particles are examined for contributions to the
force. Ultimately, if none of the branches qualify for force
contribution, the force is calculated from the leaves. The
advantage of this approach is that a distant group of par-
ticles may require examining just a few branches, while
close encounters are handled automatically by adding the
force from individual particles (leaves). The free parame-
ter θ can be fine tuned to meet the desired requirements for
accuracy and computation time. The number of compu-
tations per macroparticle scales on average as O (log Np),
a great improvement compared to the direct particle-
particle method, which scales as O (Np). The overall com-
putation cost scales as O (Np log Np) [35,39], which makes
it attractive and computationally feasible for large ensem-
ble of particles.

The Coulomb force is computed from (3), but un-
like the particle-particle method we now deal with cells,
which may contain more than one particle. An appropriate
method for handling this problem is the so-called Multi-
pole Expansion Method. The aim of this method is to pro-
vide high accuracy by roughly accounting for the particle
distribution in the cell.

The potential at point P , where macroparticle i is lo-
cated, can be expressed as a sum of the potentials of all
individual macroparticles in cell j (Fig. 1b)

ΦCoulomb
i (�rij) =

nj∑

k=1

Φ(�rik) =
nj∑

k=1

Φ(�rij − �rk)

∼=
nj∑

k=1

(Φ(�rij) − �rk∇Φ(�rij) + ...) (8)

where �rik is the vector from macroparticle i to the in-
dividual particle k in the cell and �rij = (xij , yij , zij) is
the vector from macroparticle i to the “center of mass”
of cell j, defined as �rij = �ri − �rj . After (or during)
the tree construction the total charge qj =

∑nj

k=1 qk,
the “center of mass” �rj =

∑nj

k=1 |qk|�rk/
∑nj

k=1 |qk| and
dipole moment �dj =

∑nj

k=1 qk�rk for each cell j contain-
ing nj particles are calculated. The total Coulomb force
on a macroparticle i calculated from all qualifying cells
is �Fi(�r) = −∇rΦ

Coulomb
i (�r). Explicit expressions for the

monopole, dipole and quadrupole terms can be found in
reference [39]. We use only the first two terms of the mul-
tipole expansion, the monopole and dipole moments:

�Fi = qi

∑

j

(
qj

4πε0R3
ij

�rij +
3�rij · �dj

4πε0R5
ij

�rij − 1
4πε0R3

ij

�dj

)

.

(9)
Similar to the particle-particle method, the effective dis-
tance to cell j takes form Rij =

√|�rij |2 + r2
s . Note that

for each cell j the force is now expressed with respect to
the “center of mass” of the corresponding cell. The first
term in (9), the monopole contribution from cell j, in-
cludes the total charge of the cell and has the same form
as that of an individual macroparticle. The second and
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third terms, the dipole moment, accounts for the particle
distribution in the cell through the parameter �dj . As seen
from equation (9) the inclusion of the dipole moment to
the force computation needs only a little computational
overhead and improves the accuracy of the electrostatic
force at low computational cost.

The free parameter θ plays a key role in the computa-
tions. It is related to both the accuracy of the Coulomb
force computation and computation time. It offers great
flexibility, yet it must be carefully chosen. It is prob-
lem dependent, but the typical range of values for θ is
well known. When the main issue is accuracy, θ must
be decreased. High accuracy can be achieved for small
θ = 0.1–0.2. Values of θ of order of unity allow a sig-
nificant reduction of computation time, if the inaccuracy
can be tolerated. To compensate for the loss of accuracy,
one can include higher order terms in the expansion (8).
So both θ and the number of terms of the multipole ex-
pansion can be tuned to meet the desired accuracy and
computation time. Such flexibility is undoubtedly a great
advantage of the tree code.

3.2 Boundary conditions

We now return to the boundary conditions discussed in
the previous section. Equation (9) can be used to evalu-
ate the electrostatic force from neighboring clusters. The
calculated force is approximate due to the truncation of
expansion (8), but fortunately, even such a crude approx-
imation provides sufficient accuracy. In what follows we
will present a simple and straightforward way to calcu-
late the electrostatic force from neighboring clusters. The
only assumption we make is that a neighboring cluster is
exactly the same as the cluster under consideration and
that it is located at a distance equal to one intercluster
distance Ric. One can add the force from this cluster with-
out partitioning it and looking into the detailed structure
of particle distribution by using equation (9). The trick is
to add the force from “root”, but shifted one intercluster
distance (rij → rij +Ric). The root properties are already
known from the tree construction. Adding a neighboring
cluster as one cell is seemingly inaccurate, but since the
cluster is quasineutral, its charge is zero (qj=root ≡ 0) and
the leading term drops out. Only the dipole moment of the
expansion contributes to the force, which decreases very
rapidly with increasing distance from point P . Therefore,
the contribution from neighboring clusters is expected to
be relatively small. The computational cost of including
the boundary conditions is discussed in Section 4, but it is
obviously marginal since the properties of the “root” have
already been calculated.

3.3 Pros and cons of the tree algorithm

The tree construction is unique and unambiguous, it re-
quires no assumption about particle distribution and can
be constructed at each time step. The total number of
nodes (branches plus leaves) is proportional to the number
of macroparticles Np participating in the computations. In

our simulations the number of nodes is ∼1.5Np. The com-
puted force is not exact, but the algorithm allows the error
to be estimated and analyzed. The error can be controlled
via the free parameter θ and the number of terms of the
multipole expansion.

The program realization of the tree algorithm is not
very complicated, particularly if using a computer lan-
guage such as C++ or FORTRAN 90, which allow recur-
sion. The tree construction and traversal can be neatly
organized using recursive subroutines. Non-recursive im-
plementation is also possible. Details of the tree algo-
rithm, error analysis and computer implementation are
given elsewhere [39]. It should be pointed out that the tree
algorithm can be parallelized and thus used on massively
parallel computers.

4 Results and discussions

In this section results both for the particle-particle and
tree method are presented and compared. Our primary
goal is to study the impact of the free parameter θ on the
accuracy and computation time of the tree algorithm. Nu-
merical experiments with different values of θ showed that
with increasing θ the computation time decreases, but the
accuracy deteriorates. For small θ only small branches con-
taining few particles are added to the Coulomb force (9).
This results in high accuracy, but since more branches
must be included, the computation time increases as well.
In the limiting case θ → 0 the tree method approaches the
accuracy of the particle-particle method, but it exceeds
it in time because of the additional computational over-
head of the tree construction and traversal. It is certainly
not wise to use too small a value of θ, since the advan-
tage of the tree method to use large chunks of particles
is lost. Intermediate values of θ (∼0.5) sacrifice a little
bit of the accuracy, but improve significantly the com-
putation time. Larger values of θ, of the order of unity,
would be even more advantageous in terms of computa-
tion time, but they may introduce significant error in the
force calculation. This is to be expected, since for θ = 1
the force is calculated at a distance equal to the cell size
and the particle distribution inside the cell may greatly
affect the result. In general, one should choose the largest
value of θ, for which the error can be tolerated. Stud-
ies of gravitational problems and some limited studies of
plasma physics problems indicate that θ should be be-
tween 0.1 and 1. The Coulomb force is a long-range force
just as the gravitational one, and we expect θ to be in the
same range. We performed sets of calculations for differ-
ent values of θ between 0.25 and 1 and compared with the
exact (particle-particle) solution. The particular values of
θ we chose are 0.25, 0.5 and 1. We applied the model to
medium size xenon and deuterium clusters. The latter is of
interest for modeling fusion reactions and neutron yield in
D-D processes. The laser and cluster parameters, as well
as useful computational parameters are given in Table 1.
Details of the cluster dynamics for xenon clusters at the
same conditions have been recently published [29].
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Table 1. Laser, cluster and computational parameters for Figures 2–12.

xenon deuterium
Cluster parameters
Cluster radius R0 [Å] 50 100
Wigner-Seitz radius Rw [Å] 2.73 1.70
Intercluster distance Ric [Å] 1000 2000
Number of atoms per cluster N 6144 2.04 × 105

Laser parameters
Peak laser intensity I0 [W/m2] 1 × 1020 1 × 1020

Peak laser electric field [V/m] 2.8 × 1011 2.8 × 1011

Laser wavelength [nm] 800 800
Laser pulse duration [fs] 400 400
Laser pulse center [fs] 200 200
Laser FWHM [fs] 125 125
Computational parameters
Time step dt [attosecond] 1 0.5
Number of ion/atom macroparticles 100 500
Number of ions/atoms per macroparticle n 61.4 408
Size of an ion/atom r0 [Å] 1 1
Size of an ion/atom macroparticle [Å] 3.9 7.3
Number of electron macroparticles 860 407
Number of electrons per macroparticle n 100 500
Size of an electron r0 [Å] 1 1
Size of an electron macroparticle [Å] 4.6 8.0
Total number of macroparticles Np 960 907
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Fig. 2. (Color online) Average charge per atom vs. time for
Xe clusters calculated with the particle-particle method and
tree algorithm with θ = 0.25, θ = 0.5 and θ = 1. The conditions
are given in Table 1.

4.1 Xenon

The laser intensity and the envelope of the laser elec-
tric fields are shown in Figure 2. The averaged charge
per atom, also shown in Figure 2, is zero up to time
t < 40 fs. There are no ionizations as the laser inten-
sity is too low. For later times optical field and colli-
sional ionization increase the averaged charge per atom.
The results for all parameters of θ (symbols), even for
θ = 1, are in excellent agreement with the exact solu-
tion (solid line). The production of new electrons is well
represented for relatively large values of the parameter θ.
This is illustrated in Figure 3, which displays the total
number of electrons, the number of inner and outer elec-
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Fig. 3. (Color online) Number of inner electrons, outer elec-
trons and total number of free electrons for Xe clusters vs. time.
Particle-particle method (a); tree algorithm with θ = 0.25 (b);
θ = 0.5 (c); and θ = 1 (d).

trons for the same values of θ. For θ ≤ 0.5 the results
from the tree simulations are identical to the exact ones.
For θ = 1 the number of inner electrons slightly deviates
from the exact solution. Three-dimensional snapshots of
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Fig. 4. (Color online) Positions of the electron macroparticles
calculated with the particle-particle method (left) and tree al-
gorithm with θ = 0.5 (right).

the electron macroparticles positions calculated with the
particle-particle method and tree algorithm with θ = 0.5
are given in Figure 4. Both simulation runs have been done
with exactly the same input parameters, including the ini-
tial distribution of macroparticles discussed in Section 2.1.
It is interesting to observe that the tree algorithm leads
to slightly different particle trajectories than the (exact)
particle-particle method. This is the case for only a small
fraction of the macroparticles, but the occasional individ-
ual deviation from the exact trajectories has limited im-
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Fig. 5. (Color online) Energy balance terms for Xe clusters
calculated with the particle-particle method (a); tree algorithm
with θ = 0.25 (b); θ = 0.5 (c); and θ = 1 (d).
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Fig. 6. (Color online) Mean electron energy (a) and ion energy
(b) for Xe clusters vs. time calculated with the particle-particle
method and tree algorithm with θ = 0.25, θ = 0.5 and θ = 1.

pact on the “global” properties (Figs. 3, 5–7). The energy
balance is of paramount importance. It provides valuable
information not only for the amount of energy absorbed,
but how this energy is partitioned among various channels.
The absorbed energy per cluster is denoted in Figure 5 as
“total”. The tree algorithm is very accurate for values of
the fitting parameter not exceeding 0.5. For θ = 1 neither
the absorbed energy, nor the kinetic and potential energies
are accurately represented by the tree algorithm. In par-
ticular, the potential energy is slightly negative, while the
exact solution is slightly positive. This is a consequence of
the poor representation of the Coulomb forces by the tree
method when the field is calculated at a distance compa-
rable to the cell size. Most of the energy ends up as kinetic
energy of both electrons and ions. It would be of interest
to compare the accuracy of the tree algorithm for elec-
trons and ions separately. Both particles interact through
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Coulomb forces, but the ions are much heavier and slug-
gish. The impact of θ on both the mean electron and ion
energies (Fig. 6) is similar to those in the previous figures:
θ = 0.5 provides fairly good accuracy, while for θ = 1 the
accuracy deteriorates. The last cluster parameter under
consideration is the time evolution of the cluster radius,
which is shown in Figure 7. The cluster retains its initial
radius for ∼150 fs, but then it rapidly expands due to the
large amount of absorbed energy, which results in large
internal pressure. Generally, the laser energy is deposited
into the cluster on a sub-ps time scale, much shorter than
it can be dissipated by thermal conduction. An overheat-
ing and large pressure gradient is developed, which causes
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Fig. 9. (Color online) Energy balance terms for D clusters
calculated with the particle-particle method (a); tree algorithm
with θ = 0.25 (b); θ = 0.5 (c); and θ = 1 (d).
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Fig. 10. (Color online) Mean electron energy (a) and ion en-
ergy (b) for Xe clusters vs. time calculated with the particle-
particle method and tree algorithm with θ = 0.25, θ = 0.5 and
θ = 1.

the cluster expansion. The cluster expansion is aided by a
Coulomb explosion; the net positive charge of the cluster
causes the ions to repel each other and the ensemble of
ions expands. The contribution of both mechanisms (hy-
drodynamics and Coulomb explosion) is comparable. The
results for the largest value of θ we used, θ = 1, are satis-
factory.

4.2 Deuterium

The results for deuterium are shown in Figures 8–11. Fig-
ure 8 displays the total number of electrons, the number of
inner and outer electrons for the particle-particle method
and θ = 0.25, 0.5, 1. Figure 9 displays the energy balance,
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Figure 10 displays the mean electron and ion energies,
and Figure 11 displays the cluster radius. Qualitatively,
the variation of θ produces the same effect: the results for
θ ≤ 0.5 are accurate, while those for θ = 1 have somewhat
limited accuracy. However, depending on the application,
even results with θ = 1 may be acceptable. For example,
the interest in deuterium clusters is primarily for studying
fusion processes, and as seen in Figure 10, the mean ion
energy at the end of the laser pulse for θ = 1 is accurate
to within ∼10%.

4.3 Impact of the boundary conditions

The method of incorporating boundary conditions was
briefly discussed in the previous section. From a physical
standpoint, the boundary conditions treat adjacent clus-
ters as a source of additional electromagnetic field, which
must be added to the laser field and the field generated
inside the cluster. First, with the help of Figure 12 we
shall make a quick quantitative analysis of the contribu-
tion from neighboring clusters. The analysis is done for Xe
clusters. During the cluster expansion the Debye length is
comparable to the cluster radius. Since the Coulomb force
dies on a distance comparable to the Debye length, the
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Fig. 13. (Color online) Absorbed energy per cluster (a), elec-
tron and ion density (b), average charge per atom (c) and mean
electron and ion energy (d) vs. time for Xe clusters with ini-
tial radius of 50 Å, subject to laser radiation with intensity
1016 W/cm2 and wavelength 800 nm. Computation algorithm:
tree method with θ = 0.5, solid lines: impact of adjacent clus-
ters neglected, open symbols: impact of adjacent clusters in-
cluded.

electrostatic field of individual clusters is well “shielded”
and has negligible impact on its neighbors. Therefore, one
would expect that the field produced by charged parti-
cles from adjacent clusters is small compared to the field
generated inside the cluster. To verify this statement, we
performed an additional computation in which the electro-
static field from adjacent clusters is added to the Coulomb
and laser fields as discussed in Section 3.2. Though we do
not compare the fields directly, we derive information re-
garding the impact of adjacent clusters by comparing some
fundamental cluster parameters. The absorbed energy per
cluster, electron and ion density and mean energy differ by
∼5%, and the charge per atom by ∼1–2%. From Figure 13
we conclude that the contribution of adjacent clusters to
the total electromagnetic field is indeed small and can be
omitted.

4.4 Analysis of the computation time

We made a series of runs for xenon clusters with dif-
ferent number of macroparticles Np, varying from ∼500
to ∼3500. We verified that the computation time of the
particle-particle method scales as O

(
N2

p

)
, while that for

the tree method scales as O (Np log Np) (Fig. 14). The
break is at Np ≈ 1000, about the same as found by
other authors [38,39]. The reason for the break location
is well-known: the tree algorithm is indeed more effi-
cient in calculating the forces since the number of cells
used for computing the force is on average less than the
number of macroparticles, but the overhead involved in
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the tree construction and traversal, and computing the
dipole moments can be fairly large. The tree algorithm
becomes more efficient than the direct particle-particle
force summation for number of macroparticles Np > 1000.
Given the small time step (∼1 attosecond), even today
the computation time for Np ≈ 1000 is a challenge, but
increase of computer power and/or multithread program-
ming will definitely favor the tree method and its varia-
tions. The computation time in our simulations scales as
1/θ (Fig. 14). From Figures 2–11 we determined the op-
timum value of the parameter θ by comparing the basic
dynamic properties of the cluster such as ionization, en-
ergy absorption, and cluster expansion. We conclude that
clusters can be successfully modeled using the tree algo-
rithm without loss of accuracy for values of the fitting
parameter θ ≈ 0.5.

We tracked the computation time spent in various sec-
tions of the tree code. For Xe clusters with Np ≈ 103

macroparticles the bulk of the computation time (∼89%)
is used for computing the Coulomb force (9). The fraction
of time spent in other sections of the code is as follows:
tree construction and traversal — 4.5%, boundary condi-
tions — 2.5%, auxiliary computations related to particles
(mean electron and ion energy, Electron and Ion Energy
Distribution Functions, etc.) — 3%, initialization and file
output — 1%.

5 Conclusion

A fast three-dimensional tree algorithm for computing
the electrostatic force acting upon charged particles in
laser-cluster interactions has been developed. The method
has been employed as part of a fully relativistic three-
dimensional Molecular Dynamics Model. Results from the
tree algorithm have been compared with the conventional
particle-particle method for clusters composed of xenon

and deuterium. The accuracy and computation time of
the tree algorithm has been analyzed. We found that for
large numbers of macroparticles, exceeding one thousand,
the tree algorithm is computationally advantageous. The
optimum free parameter of the tree method has been de-
termined to be θ ≈ 0.5 for different gases (with high and
low Z), cluster sizes and laser intensities, both relativistic
and non-relativistic. We addressed the effects of bound-
ary conditions by studying the contribution of adjacent
clusters to the total electromagnetic force exerted on indi-
vidual particles. We found that the adjacent clusters play
a minor role in the overall cluster dynamics.

We would like to thank Quentin Saulter and ONR for their
support. Also, a portion of the work was supported by NRL
under the 6.1 Basic Physics Program.
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